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Abstract

A dynamic asset-allocation model is specified in probabilistic terms as a combination
of return distributions resulting from multiple pairs of dynamic models and portfo-
lio strategies based on momentum patterns in US industry returns. The nonlinear
state space representation of the model allows efficient and robust simulation-based
Bayesian inference using a novel non-linear filter. Combination weights can be cross-
correlated and correlated over time using feedback mechanisms. Diagnostic analysis
gives insight into model and strategy misspecification. Empirical results show that
a smaller flexible model-strategy combination performs better in terms of expected
return and risk than a larger basic model-strategy combination. Dynamic patterns
in combination weights and diagnostic learning provide useful signals for improved
modelling and policy, in particular, from a risk-management perspective.

1 Introduction

Four stylized facts about the time series pattern of monthly returns of ten US industries,
1926M7 - 2015M6, lead to the specification of a set of dynamic models.1 Forecasts from
this model set are directly connected - without the specification of a utility or other scoring

∗We thank two anonymous referees and the guest-editors, Sylvia Kaufman and Sylvia Frühwirth-
Schnatter, for their valuable comments on earlier versions of this paper which led us to prepare an extended
and substantially revised version of Baştürk, Grassi, Hoogerheide and Van Dijk (2016b).

1These industry returns are constructed by equally weighting all stock returns in the spe-
cific industry, which is similar to Moskowitz and Grinblatt (1999) The data are retrieved from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french on 24/10/2015.
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function - with a set of data driven portfolio strategies. These strategies refer to the basic
practice in financial investment that one invests in the ‘winner’ industry and goes short in
the ‘loser industry’, corresponding to the industries with the highest and lowest cumulative
returns in past periods. That is, one aims to take advantage of a positive or a negative
’momentum’ in returns of particular industries.

We show that this dynamic asset-allocation model can be represented in probabilistic
terms as a combination of return distributions resulting from multiple pairs of models and
strategies. It is represented as a nonlinear state space model which allows for efficient
and robust simulation-based Bayesian inference. The combination weights can be cross-
correlated and correlated over time where the latter are defined through the use of feedback
mechanisms that enable learning. Our approach extends the mixture of experts analysis
in Jacobs et al. (1991); Jordan and Jacobs (1994); Jordan and Xu (1995); Peng et al.
(1996). Further, we allow for model and strategy incompleteness. This enables us to
study misspecification effects through diagnostic analysis of economic results and posterior
residuals. This, to the best of our knowledge, novel methodology provides dynamic asset-
allocations using a learning period for optimal weights at every decision period.

To achieve this, we present an extension of the Forecast Density Combination (FDC)
scheme from Billio et al. (2013) to include sets of strategies as well as models. Using
this scheme in a fully Bayesian setting, another novel contribution of our approach is that
the policy recommendation to an investor about different portfolio scenarios includes the
uncertainty in the returns. This is important from a risk management perspective. With
merely a standard point forecast, an investor has no information on e.g. the Value-at-Risk
of his/her portfolio.

For the numerical evaluation of the densities involved we make use of the result that
this FDC can be represented as a non-linear state space model. Inference on density
features brings a challenge in terms of estimation efficiency and robustness and amount
of computing time, particularly in case of a large number of models and strategies. In
order to tackle this, we introduce a novel non-linear and non-Gaussian filter, labeled the
M-Filter, which is embedded in the density combination procedure. This filter is based
on the MitISEM procedure recently proposed by Hoogerheide et al. (2012) and further
developed in Baştürk et al. (2016a) and Baştürk et al. (2017).

The results of our empirical analysis of the proposed FDC approach contain valuable infor-
mation for further research as well as informative signals about the scenarios of alternative
portfolio policies. This may be useful information for a large financial investment firm, like
a pension fund. The results refer to three central issues. First, we obtain evidence that
averaging over density combinations of sets of model forecasts and strategy returns pays
off in terms of expected return and risk features. The forecasts of the model sets help to
improve expected return while the strategy sets help to reduce risk features. Basic model
structures and strategies with fixed weights perform worse in terms of expected return and

2



Sharpe ratio. Second, we obtain evidence that the dynamic patterns of the weights in these
combinations differ in quiet and more volatile periods. Basic learning mechanisms for the
weights are useful instruments in this respect. Third, there exist adverse effects of misspec-
ification of the model and strategy set on the results. Diagnostic learning about economic
information and about posterior residual patterns is helpful for improved modeling and
policy. We emphasize that our empirical results are conditional upon an information set
which consists of our data set, US industrial portfolios over the period between 1926M7
and 2015M6, and our specified model and strategy set.

The contents of this paper are structured as follows: Section 2 introduces the dynamic
models used for US industry returns. Section 3 describes the direct connection between
forecasts of sets of dynamic models and returns of portfolio strategies. Section 4 covers
the extended FDC scheme and introduces the M-Filter. Section 5 contains the empirical
application using returns from ten US industries. Section 6 concludes. An on-line Appendix
contains additional results.

2 Stylized facts about ten US industry returns lead-

ing to dynamic models

Traditional factor models rely on macro or firm specific factors to explain expected pay-
offs of financial assets, see Fama and French (1992, 1993, 2015). In the literature, several
dynamic factor models, with different long and short-run dynamics for returns, are shown
to be useful in capturing such data properties, see Ng et al. (1992), Quintana et al. (1995),
Aguilar and West (2000) and Han (2006) among several others. These models are com-
ponents of the Factor-Augmented Vector AutoRegressive model (FAVAR), see Bernanke
et al. (2005) and Stock and Watson (2005). Members of this class of models are applied
for portfolio construction in Aguilar and West (2000), Talih and Hengartner (2005), Engle
and Colacito (2006), Carvalho et al. (2011) and Zhou et al. (2014), among many others.

In this section we summarize several stylized facts about the data which leads in a relatively
natural way to the specification of our set of dynamic models.

Figure 1(a) presents monthly returns of ten industries where the industries are abbreviated
as follows: ‘NoDur’ for consumer non-durables (food, tobacco, textiles, apparel, leather,
toys), ‘Durbl’ for consumer durables (cars, TV’s, furniture, household appliances), ‘Manuf’
for manufacturing (machinery, trucks, planes, chemicals, office furniture, paper, commer-
cial printing), ‘Enrgy’ for oil, gas, and coal extraction and products, ‘HiTec’ for business
equipment (computers, software, and electronic equipment), ‘Telcm’ for telephone and
television transmission, ‘Shops’ for wholesale, retail, and some services (laundries, repair
shops), ‘Hlth’ for health care, medical equipment, and drugs, ‘Utils’ for utilities, ‘Other’ for
other industries. Next, 45 pairwise correlations of the 10 industry returns in Figure 1(b)
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Figure 1: Monthly percentage returns (a), explained variation of principle components (b), and
canonical correlations (c), across 10 US industry portfolios 1926M7-2015M6. Indus-
try portfolios are abbreviated as follows: ‘NoDur for non-durables’, Durbl for ‘durables’,
Manuf for ‘manufacturing’,Enrgy for ‘energy’, HiTec for ‘hi-tech’, Telcm for ‘telecom’,
‘Shops’, Hlth for ‘health’, Utils for ‘utilities’ and the final category ‘Others’.
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and 4 principal components in Figure 1(c) are based on moving windows with 240 monthly
observations. We use the first 50 observations as the initial sample and expand calculation
windows until observation 240.

One may observe, at least, four stylized facts from Figures 1(a)–1(c): In the top figure, a
stationary autoregressive time series pattern is seen for all return series with, in addition,
clear volatility clustering also common to all series. Strong cross-section correlations be-
tween returns with a time-varying pattern are shown in the middle figure, and fourthly,
the bottom figure indicates that the total variation in the series is well captured with
one to four principal components. We emphasize that the explained variation of these
components is time-varying.

Given these typical data features, we consider several dynamic models with clearly dis-
tinct short and long-run dynamics and different features of the disturbance distributions.
All models considered are members or combinations of members of the class of Factor
Augmented Vector AutoRegressive models extended to include Stochastic Volatility of the
idiosyncratic disturbances (FAVAR-SV) :

yt = βxt + Λft + εt, εt ∼ N(0,Σt),

ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Q).
(1)

where the dependent variable yt = (y1,t, . . . , yN,t)
′ is the N×1 vector of industrial portfolio

returns, where yi,t denotes the return from industry i at time t and the time series runs
from t = 1, . . . , T . The C×1 vector of predetermined variables xt may contain explanatory
variables as well as lagged dependent variables. The K× 1 vector ft contains unobservable
factors, where φj for j = 1, . . . L is a K ×K matrix of autoregressive coefficients at lag j.
Λ is an N ×K matrix of factor loadings. In addition we define a time-varying variance-
covariance matrix for the idiosyncratic disturbances, Σt, and a fixed covariance matrix for
the factor disturbances, Q. In all specifications Σt is a diagonal matrix.2

Different short and long-run dynamic behavior of member models of the FAVAR-SV class
is obtained by specifying different assumptions regarding the predetermined variables xt,
the factor structure ft, the idiosyncratic and factor disturbances. The basic dynamic factor
model, denoted by DFM, assumes β = 0(N×C), a normal distribution for the idiosyncratic
and factor disturbances with time-invariant variance-covariance matrices. Another basic
model is the vector autoregressive model, denoted by VAR, and it is obtained by letting
Λ = 0(N×K), defining xt as the lagged dependent variable and a time-invariant variance-
covariance matrix of the disturbances. A third basic model, denoted by SV, has a stochastic
volatility component in the idiosyncratic disturbances and β = 0 and Λ = 0. We provide

2We have also estimated models with a t−distribution and/or a time varying covariance matrix, Qt.
Both extensions led to overfitting and poor empirical and forecasting results. We have therefore deleted
these models from our analysis. Particularly for the latter case, we acknowledge that the Markov chain
Monte Carlo (MCMC) sampler can be improved, see Kastner et al. (2017).
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more details on the specification of the models in the on-line Appendix A together with
their prior specification and Bayesian estimation procedures.
In our empirical analysis, reported in Section 5, we compare the performance of alternative
combinations of models for forecasting and portfolio analysis. We start with exploring the
contribution of each of the three basic models, VAR, SV and DFM, separately and as a
model combination. As a next step we investigate combinations of more flexible models
like VAR-SV and DFM-SV and finally, the general class of FAVAR-SV is investigated.

We end this section with a remark on identification. The general model in equation (1) is
not identified without further parameter restrictions. This is clearly seen from the following
equality:

ftΛ = ftRR−1Λ,

for any K × K invertible matrix R, which has K2 free parameters. Hence at least K2

restrictions are needed for the model to be identified, see Geweke and Zhou (1996), Lopes
and West (2004), Bai and Peng (2015) and Frühwirth-Schnatter and Lopes (2018). In all
models, we follow the identification scheme in Lopes and West (2004) and assume diagonal
covariance matrices. See Chan et al. (2018) and Kaufmann and Schumacher (2017) for
more recent specifications of identification in this class of models.

3 Connecting dynamic model forecasts directly with

data driven portfolio strategies

Standard portfolio analysis compares realized returns from different portfolio strategies and
selects the best performing one, see e.g. Aguilar and West (2000). But return forecasts
using dynamic models do not lead directly to a practical policy tool for investors, that is,
to a decision which portfolio strategy to follow. Alternatively, it is possible to incorporate
a specific portfolio strategy in the model, but this typically requires a specific model-based
strategy such as mean-variance optimization, see e.g. Winkler and Barry (1975), and a
specific utility function for the investor, see e.g. Aguilar and West (2000).

A novel contribution of this paper is to connect forecasts from the set of dynamic models of
Section 2 directly with a set of data driven portfolio strategies without the need to specify
a separate scoring function like a utility or loss function. Such portfolio strategies have
also been proposed by Garlappi et al. (2006) and DeMiguel et al. (2007). Our approach
differs from this literature since we consider sets of models as well as strategies and we
make use of a Bayesian approach.

Standard Momentum (S.M.): As a benchmark data driven portfolio strategy, we
consider so-called standard industry momentum. This does not involve a model structure
but directly makes use of typical momentum patterns in the time series of monthly returns
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of our set of ten US industries. The practice is that one invests in the ‘winner’ industry
and goes short in the ‘loser industry’, corresponding to the industries with the highest and
lowest cumulative returns, say, in the past 12 periods. The selected momentum breakpoints
correspond to, say, 90% and 10% quantiles for 10 industries, and these values can be
adjusted for alternative momentum strategies. The economic intuition of this strategy is
to capture market trends in industry returns.

Next, we list two portfolio strategies, based on the concept of momentum strategy, which
are directly connected with in-sample forecasts from a model or a set of models. We
note that our approach can be generalized to a wider selection of model-based portfolio
strategies, such as those analyses in Gruber and West (2017).

Model based momentum (M.M.): To construct a portfolio based on this strategy, we
use the fitted industry returns in the past period from one of the models or model sets
of Section 2, go long in the industry with the highest fitted returns and go short in the
industry with the lowest fitted returns. With ten industries, this corresponds to 90% and
10% quantiles of fitted returns. The momentum strategy in this case is similar to the S.M.
strategy where the portfolio return r̃t+1 is now given as the weighted sum:

r̃t+1 =
N∑
n=1

ỹn,t+1ωn,t, (2)

where ỹn,t+1 is a draw from the one-period-ahead forecast distribution of the n-th industry’s
return yn,t+1.

3 The weights are given as

ωn,t =


1 if ȳn,t = max{ȳ1,t, . . . , ȳN,t}
−1 if ȳn,t = min{ȳ1,t, . . . , ȳN,t}

0 otherwise,
(3)

where ȳn,t is the average of the fitted mean returns of the n-th industry over last 12 periods,
including time t.

To our knowledge, such a model-based momentum strategy is not considered in the lit-
erature, but it is a natural extension of the S.M. strategy. We emphasize that given our
Bayesian inference procedure and given that the weights are (nonlinear) functions of the
random variables ȳn,t, the underlying model and parameter uncertainty is fully taken into
account.

Residual based momentum (R.M.): Next, we consider a model-based residual mo-
mentum strategy. For this portfolio, we use the fitted asset returns in the past period,
invest in the assets with the highest unexpected returns, and go short in assets with the

3Note that in this equation we specify a draw from the one-period ahead forecast distribution of the
portfolio return. Realized returns can also be calculated alternatively using observed returns instead of
ỹn,t+1.
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lowest unexpected returns. Unexpected returns in this strategy correspond to the model
residuals at the investment decision time. This strategy can be seen as an extension of Blitz
et al. (2011). The R.M. strategy proposed in Blitz et al. (2011) sorts the returns based on
past 12 residuals from the Fama-French factor model. The assets with unexpectedly high
(low) residuals are given a positive (negative) weight. The proposed R.M. strategy follows
the same intuition but now for any specified model of the previous section and hence is
not so restrictive as the Fama-French factor model. The R.M. weights are computed as
follows:

ωn,t =


1 if ε̄n,t = max{ε̄1,t, . . . , ε̄N,t}
−1 if ε̄n,t = min{ε̄1,t, . . . , ε̄N,t}

0 otherwise.
(4)

where ε̄n,t is the average of the residuals for the n-th industry return over last 12 periods,
including time t.

The construction of our two strategies aims to include a plausible set of investment strate-
gies for each model or model combination. M.M. and R.M. strategies have the advantage
of providing an economic intuition of capturing estimated market trends. M.M. follows the
market trends explained by the systematic component, such as common factors, and R.M.
builds on return patterns that relate to the unexplained component, i.e., R.M. can serve
as a ‘error correction mechanism’ where portfolio weights adjust according to the deviation
of the last periods’ industry returns from the fitted industry return distribution. This may
occur when the underlying model of returns fails to represent all market dynamics.

Equally weighted portfolios: As an additional benchmark to the case of the S.M.
strategy, we consider an equally weighted portfolio of combined models and strategies. We
note that this portfolio differs from a model and strategy free equal weight portfolio for
which one does not evaluate a measure of uncertainty. We allocate equal weight 1

M×S to
each portfolio resulting from a model and strategy pair as in (3) and (4), and we borrow
at the risk-free rate in the sense that the 1-month Treasury bill rate gets weight -1. Since
the portfolio weights in (3) and (4) sum up to 0, the equally weighted portfolio weights
also sum up to 0. The purpose of considering this equally weighted portfolios is to identify
the importance of time-variation in model and portfolio strategy performances.

Remark We have experimented with a minimum variance (M.V.) strategy, since it is
widely used in applications and it is directly related to the forecasts of asset returns, volatil-
ities and co-volatilities. However, in our empirical exercise, the results of the M.V. strategy
are not explicitly included since the realized returns from this strategy were unstable for all
models due to estimation uncertainty and potential ill-conditioning in variance-covariance
matrix estimates, see also Michaud (1989). A fair inclusion of the results of this strategy
requires more structured or ‘sparse’ variance-covariance matrix estimation as in Kaufmann
and Schumacher (2017). This is left as a topic for further research.

8



4 Learning to average FDCs of models and strategies

In this section we extend the FDC approach by Billio et al. (2013) to include models as well
as strategies. For more background and a survey on the evolution of the FDC approach
in economics, we refer to Aastveit et al. (2018). This approach relates to the literature
on dynamic prediction pools proposed in Geweke and Amisano (2010), Waggoner and Zha
(2012) and Del Negro et al. (2016). However, we follow a fully Bayesian approach and make
use of a different law of motion for the combination weights. The origin of all this work
is the basic practice in macroeconomic and financial forecasting which consists of using a
weighted combination of forecasts from many sources, say models, experts and/or large
micro-data sets. In such a situation, one deals with three groups of variables: forecasts from
different models, weights to combine these, and the variable of interest that is forecasted.
The FDC approach gives this practice a probabilistic foundation by introducing forecast
densities for different models, a weight density and a combination density. This allows for
the quantification of the uncertainty of such implied density features as, in our case, mean
returns, volatilities and risk of large losses.

We focus in this section on three topics. We start to discuss the specific four periods
in the time-line of model estimation and portfolio construction with the implied different
return variables of a portfolio strategy. We note that in a standard FDC one has forecast
densities from different models that are combined to form the forecast density of the
observed variable of interest (such as GDP growth, inflation) in some optimal way. In our
case we deal with several constructed return variables and we discuss how and when the
densities of these variables are used in the different periods of the time-line of the process.
As a next step we show how the proposed FDC of model forecasts and strategy returns can
be specified as a nonlinear state space model. Using very general classes of distributions in
this context, the FDC model typically does not admit an analytical solution. Therefore,
in order to conduct inference about this process, as a third step, we make use of numerical
methods based on Bayesian sampling based filtering. Given the computational complexity
of our set of models and strategies, we introduce a novel, efficient and robust filtering
method, labeled the M-Filter. This leads to a substantial reduction in computation time
using also parallel computational procedures. We refer to Appendix B for technical details.

4.1 Time-line of model estimation, construction and holding of
portfolios

In Figure 2, we present a time-line of four periods that refer to estimating models for
returns, constructing industry portfolios, combining models and strategies in our FDC
approach and, finally, the holding of such a portfolio for a certain period and the actual
return obtained from that portfolio. For convenience, we restrict our discussion to the
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construction of the random variables but we emphasize these are used in our simulation-
based Bayesian procedure in order to construct the densities of these random variables
taking full parameter and model uncertainty into account.

In the first two periods [t0-t2], indicated at the top of Figure 2, there are M different models
estimated annually in the month of June using the preceding 240 monthly observations.
The result is a set of fitted returns and obtained residuals for each industry, denoted by
ỹn,m,t and ε̃n,m,t, respectively, for m = 1, . . . ,M models. In the second period, [t1-t2] in
Figure 2, S different investment strategies are formed for each model using the returns and
the weights that are based on the portfolio performances in the last 12 months, including
June. This strategy formation is similar to Jegadeesh and Titman (1993) and Fama and
French (1993) where we construct industry weights ωn,m,s,t for industry n, model m and
strategy s at time t, at the end of a skip month, July, see also Figure 2.4 Using equations
(2)–(4), a draw from the one-period-ahead forecast distribution of the portfolio return of
strategy s and model m for time t+ 1 is given by:

r̃m,s,t+1 =
N∑
n=1

ỹn,m,t+1ωn,m,s,t. (5)

We re-emphasize that our extension of the FDC approach includes an important difference
compared to the standard one. In the latter case one compares the one-period-ahead
forecast distribution of return, r̃m,s,t+1, with the density of the variable of interest which is
observable. In our case, we define the variable of interest, rt, as the actual return obtained
from investing one unit in the asset with maximum return and dis-investing from the asset
with minimum return. This is not observed ex ante. We define this as the full information
return under the constraint that portfolio weights sum up to 0. That is, it is based on a
strategy that goes long in the asset with the highest return, and goes short in the asset
with the lowest return. Therefore, this full-information return can be computed as:

rt = max
n

yn,t −min
n
yn,t. (6)

In the third period, [t2-t3] in Figure 2, our Bayesian FDC approach approximates the
distribution of (6) with the distribution of (5) (in the sense of minimizing the Kullback-
Leibler divergence) in order to construct densities which are the basis for the combination
approach and obtaining combination weights wm,s,t. We explain details of this combination
in the next subsections.

In the fourth period, [t3-t4] in Figure 2, we evaluate the actual returns, denoted by rrealm,s,t+12

4In the literature, the skip month is often used to remove market micro-structure effects, see Asness
et al. (2013). Our empirical results are robust to using the month of June for obtaining forecasts and
keeping July as the skip month. The portfolio is held for 12 months starting from August every year.
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Figure 2: Time-line of model estimation, strategy construction, FDC, portfolio holding period and
realized return.

Note: ‘YY’ indicates the year of portfolio decision.

using alternative sets of models and strategies. In addition, we evaluate and obtain the
combined realized return, rrealt+12, over a holding period of 12 months as follows:

rrealm,s,t+12 =
t+12∑
t′=t+1

rrealm,s,t′ =
t+12∑
t′=t+1

N∑
n=1

yn,t′ωn,m,s,t, (7)

rrealt+12 =
t+12∑
t′=t+1

M∑
m=1

S∑
s=1

rrealm,s,t′wm,s,t (8)

where yn,t′ are the realized returns for each industry, ωn,m,s,t is the weight of industry n
given model m and strategy s, wm,s,t is the weight of the combination of model m and
strategy s; both types of weights are determined at time t. Realized returns in equations
(7) and (8) are then used to assess the risk-return features of all models, strategies and a
combination of these.

4.2 Density combinations of model forecasts and strategy re-
turns

In this subsection we present for the third period, [t2-t3] in Figure 2, how the FDC approach
makes use of the different returns constructed from sets of models and strategies which
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were presented in Sections 2 and 3. The FDC model can be described as:

p(rt|I) =

∫ ∫
p(rt,wt, r̃t|I)dwtdr̃t (9)

=

∫ ∫
p(rt|wt, r̃t)p(wt)p(r̃t|I)dwtdr̃t,

where I denotes the information set, wt and r̃t are the M×S matrices consisting of weights
wm,s,t and draws from the forecast distribution r̃m,s,t, respectively. In addition, p(rt|wt, r̃t)
is specified as a combination density that explicitly incorporates the weights, p(wt) is the
weight density and p(r̃t|I) is the joint forecast density of all M models and S strategies.
Note that integrals are thus of dimension M × S.

We next give content to the combination density and the weight density. Partly for conve-
nience, we specify the combination density as a normal density5. This implies that there
exists a model that presents the connection between the M×S forecasts from the different
sources, r̃m,s,t with rt as:

rt =
M∑
m=1

S∑
s=1

r̃m,s,twm,s,t + εt, εt ∼ N(0, σ2
ε), t = 1, . . . , T. (10)

The model in equation (10) contains two fundamental features: First, the matrix of weights
wm,s,t for M models and S strategies consists of (unobserved) random variables so that we
can model and evaluate their uncertainty. Note that one can also evaluate the correlations
between the weights of the different models.
Secondly, we have added an error term εt which is an indication that model incompleteness
can be modeled and evaluated. That is, as well as Bayesian learning, (10) also allows
for Bayesian diagnostic analysis of misspecification. Note that with εt = 0, the density
p(rt|wt, r̃t) would be a Dirac density. These two features make the proposed approach
more general than Bayesian Model Averaging where the weights are posterior probabilities
that are fixed and the true model is assumed to be in the model set.

We provide the details of the weight density specification using the link function in Table 1.
We use the weight density in the same way as in Billio et al. (2013), as summarized on
the left hand side of Table 1. Given such a weight structure, the next point is to evaluate
the model. For general forms of the weight and combination densities, it is usually not
known how to evaluate these densities numerically in a direct way. In this situation one
can make use of representation results, due to Billio et al. (2013), which state that the
density combination model can be written as a nonlinear state space model. A summary of
this result is presented for the continuous case in Table 1. This figure shows how the FDC

5Different specifications of the combination density are possible. This is left as a topic of further
research.
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Table 1: FDC as a nonlinear state space model.∫ ∫
p(rt|wt, r̃t)p(wt)p(r̃t|I)dwtdr̃t

Combination density Measurement equation

rt ∼ N
(∑M

m=1

∑S
s=1 r̃m,s,twm,s,t, σ

2
ε

)
rt =

∑M
m=1

∑S
s=1 r̃m,s,twm,s,t + εt,

εt ∼ N(0, σ2
ε)

Link function

wm,s,t = exp(xm,s,t)∑M
m=1

∑S
s=1 exp(xm,s,t)

, for m = 1, . . . ,M, s = 1, . . . , S.

Markov process Transition equation
xt ∼ N

(
xt−1 + h(zt), σ

2
ηIM×S

)
xt = xt−1 + h(zt) + ηt,
ηt ∼ N

(
0, σ2

ηIM×S
)

where xt is the (M × S)-vector of xm,s,t, IM×S is the identity matrix and zt may be
included to capture (observed) economic variables believed to help explain xt.

approach is connected to filtering methods from the literature on nonlinear state space
modeling and inference. We illustrate this connection in the next subsection.

Remark. We note that Casarin et al. (2018) restated the continuous case and provide a
representation of the forecast density combination as a large finite mixture of convolutions
of densities from different models. The essential step is that the combination density is
now replaced by a finite mixture density. This adds flexibility to the FDC approach, we
leave this as a topic for future research.

4.3 The M-Filter

Through a set of simulation studies, we show that the proposed filter is an improvement in
terms of the approximation properties and computing time compared to other non-linear
and non-Gaussian filters such as the Bootstrap Particle Filter (BPF) of Gordon et al.
(1993) and the Auxiliary Particle Filter (APF) of Pitt and Shephard (1999).

The combination scheme in Table 1 admits the general state space model (SSM) represen-
tation:

rt ∼ p(rt|αt), (11)

αt ∼ p(αt|αt−1), (12)

in which (11) and (12) describe the measurement process of the ‘optimal return’ rt from
equation (6) (treated as ‘the dependent observation’), and the transition process of the
extended state αt, respectively. We assume an initial state distribution α0 ∼ p(α0). Note
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that the extended state consists of the latent combination weights and the, potentially,
fixed parameters of the system, most importantly the measure of model-strategy set in-
completeness σ2

ε . The extended state can also include appropriately specified learning
parameters. We are interested in p(αt|r1:t), the marginal distribution of the posterior
distribution of the state, called filtering distribution and given by

p(αt|r1:t) =

∫
p(α0:t|r1:t)dα0:t−1. (13)

Our novel filtering approach is summarized as follows. Firstly, the M-filter extends the
particle filtering methods by not needing a resampling step. Secondly, it extends efficient
importance sampling by using an on-line sequential procedure. Thirdly, in the approxima-
tion use is made of a very flexible mixture of Student’s t distributions instead of the more
restrictive exponential class.

We first explain our extension of the particle filter literature. These filters are based on
a recursive formula for (13), which expresses p(αt|r1:t) as a function of p(αt−1|r1:t−1) and
rt, possibly time-varying. Then the computations are carried out in two steps: prediction
and updating. The former step relates to the way we sample the draws at time t and the
latter provides an IS correction for not using the true target density for sampling. Impor-
tantly, propagation of the particles leads to the necessity of resampling, as the sequential
importance sampling is bound to lead to weight degeneracy problems and in consequence
finally only one particle carrying the full weight. Not only might the resampling step be
time consuming but it also introduces additional Monte Carlo variation.6 We avoid the
propagation step by replacing it by an independent sampling step in each time period t.
Here we extend the literature about importance sampling for SSM based on smoothing, e.g.
Efficient Importance Sampling of Richard and Zhang (2007) and Liesenfeld and Richard
(2003), or Numerically Accelerated Importance Sampling of Koopman et al. (2015). These
methods are based on obtaining a good approximation to the smoothing density at each
time period t and drawing from each p(αt|r1:t) independently. However, they are used in
an off-line analysis. That is, based on a sample of a fixed size, while our primary goal is
on-line tracking based on filtering. We make use of independent sampling in a sequential
way using a very flexible approximation density based on mixtures of Student’s t densities.
In order to specify our filtering method, we start with explicitly expressing (13) as follows

p(αt|r1:t) ∝ p(rt|αt)p(αt|r1:t−1). (14)

Equation (14) presents a basic Bayesian formula, where the posterior distribution of the
current sate αt given all the available data r1:t is proportional to the prior p(αt) updated
by the likelihood p(rt|αt), where we condition upon r1:t−1. The likelihood involves only

6It also leads to path degeneracy, which is particularly problematic in the context of smoothing and in
the MCMC sampling based on Particle MCMC, cf. Andrieu et al. (2010) and Lindsten et al. (2014).
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the most recent observation rt due to the sequential structure of the SSM. Even though we
do not want to perform propagation of importance densities in the usual way of filtering
procedures, we still need to keep track of the sequential structure of the SSM. We achieve
this by putting a hierarchical prior on αt, based on the empirical distribution of αt−1.

p(αt|r1:t,αt−1) ∝ p(rt|αt)p(αt|αt−1)p(αt−1). (15)

Suppose that we have a sample {α(i)
t−1}Mi=1 from the previous time period t − 1 so that

we can approximate p(αt−1) as p(αt−1) ≈ 1
M

∑M
i=1 δα(i)

t−1
(αt−1), where δa(·) is the Dirac

measure at a. Then, (15) becomes:

p(αt|r1:t,αt−1) ∝∼
1

M
p(rt|αt)

M∑
i=1

p(αt|α(i)
t−1)δα(i)

t−1
(αt−1). (16)

Typically we cannot draw from (16) directly and we need to resort to sampling techniques
such as importance sampling (IS).

The choice of the proposal density is crucial for the performance of any IS scheme and it
has received considerable attention in the Sequential Monte Carlo literature, cf. Doucet
et al. (2001), Liu (2001), Kunsch (2005) and Creal (2012). In the M-Filter we base our
approximation of (16) on the Mixture of t by Importance Sampling weighted Expectation–
Maximization (MitISEM) algorithm proposed by Hoogerheide et al. (2012) and developed
in Baştürk et al. (2016a). It has been shown to be able to effectively approximate complex,
non-elliptical distributions thanks to two main features of this algorithm: the class of
importance distributions (mixtures of multivariate Student’s t distributions), and their
joint optimization (with the Expectation-Maximization algorithm). The former allows
to closely track distributions of nonstandard shape (multi-modal, skewed). The latter is
iteratively carried out with the objective of minimizing the Kullback-Leibler divergence
between the unknown true target distribution and the candidate density.

Robustness and flexibility in constructing approximations are particularly important from
the filtering perspective in econometrics. For instance, stochastic volatility of many time
series demonstrates itself via volatility clustering and it might be hard to efficiently capture
periods of low and high volatility using standard approaches based on a single density
approximation. Furthermore, especially in macro-econometrics one often observes breaks
in time series which usually are very challenging to filter. We refer to the latter issue in
the later part of this section.

Employing the basic MitISEM algorithm to approximate (16) means targeting the marginal

posterior density p(αt|r0:1,αt−1) with a categorical prior C({α(i)
t−1}Mi=1) (with equal weights).

Hence, drawing from such a posterior density requires sampling the prior hyperparame-
ters from the categorical distribution being the equally weighted sample of {α(i)

t−1}Mi=1. In
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practice, this means adopting hierarchical Bayesian modeling, in which at the first stage
we draw αt−1 ∼ C({α(i)

t−1}Mi=1), and at the second stage we draw αt|αt−1 ∼ g
(H)
t (αt),

where g
(H)
t (αt) is the final approximation being a mixture of H Student’s t densities. The

resulting sample {α(j)
t }Nj=1 becomes the empirical prior for the next time period’s analysis.

Importantly, the MitISEM algorithm requires only candidate draws and IS weights, so it
can simultaneously deal with several target densities. Suppose that at time t a separate
target density is specified based on each draw α

(j)
t−1, j = 1, . . . ,M obtained in the previous

time period, i.e.
p(rt|αt, r̃t)p(αt|α(j)

t−1).

Then we construct a single approximation for these multiple targets for each time period t
using MitISEM by minimizing the average of the Kullback-Leibler divergences between the
target densities and the candidate density. In this setting the target for αt depends on α

(j)
t−1

but the candidate does not. We call this specific application of MitISEM for the purpose of
quick filtering the M-filter algorithm. In our situation the target density of αt given αt−1
does not crucially depend on the particular value of αt−1, so that conditioning on the mean,
variance and other characteristics of the distribution of αt−1 suffices here. We provide
the details of the algorithm in Appendix B. Note that computational efficiency gains are
feasible by making use of parallel computing, for instance using graphics processing units.

Validation and importance for typical features of economic time series: Monte
Carlo experiments reported in Appendix C demonstrate a good statistical performance
of the M-Filter. To illustrate its economic relevance we compare below the performance
of the M-Filter and two other filters, the BPF of Gordon et al. (1993) and the APF of
Pitt and Shephard (1999), on an experiment with structural breaks in the time series. We
examine two cases of structural breaks in AR(1) models and we use the finite mixture
scheme in Table 1 with the logistic weight specification, so that the measurement equation
is nonlinear in the state process.

We simulate the following five return series with different persistence, which play the role
of the draws r̃t from the forecast densities:

r̃1,t =
k

10
+

k

10
r̃1,t−1 + ηt, ηt ∼ N(0, 1), k = 1, . . . , 5.

Next, we create the measurement series rt as a series switching between the generated
series r̃i,t, i = 1, . . . , 5. We then compare the M-Filter with the BPF and APF for two
different cases, varying in the number of breaks in the series, as described below. The first
case has a single break/switch while the second case has two breaks/switches to emulate
crisis periods.
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Table 2: The Mean Squared Error MSE = 1
T

∑T
t=1

(
1
R

∑R
i=1(α̃t,i − αt,i)

2
)

, both relative to the

Kalman Filter (KF). α̃t,i denotes the posterior mean obtained in the ith replication. The
results are obtained from R = 100 replications, with 50,000 particles for the Bootstrap
Particle Filter (BPF), the Auxiliary Particle Filter (APF), and our M-Filter.

Case 1 Case 2
Model MSE Time MSE Time

KF 1.000 0.007 1.000 0.007
BPF 0.052 58.483 0.202 58.483
APF 0.081 68.015 0.077 68.015

M-Filter 0.039 40.676 0.067 41.180

Case 1: One switch at t = 101 from r̃1 to r̃5:

rt =

{
r̃1,t + εt for t = 1, 2, . . . , 100,
r̃5,t + εt for t = 101, 102, . . . , 200,

where εt ∼ N(0, σ2
ε) with σε = 0.05.

Case 2: Two switches at t = 101 (r̃1 → r̃5) and t = 151 (r̃5 → r̃3):

rt =


r̃1,t + εt for t = 1, 2, . . . , 100,
r̃5,t + εt for t = 101, 102, . . . , 150,
r̃3,t + εt for t = 151, 152, . . . , 200,

where εt ∼ N(0, σ2
ε) with σε = 0.05.

We compare the performance of the BPF, APF and M-Filter in a small Monte Carlo
experiment of R = 100 replications. Table 3(a) presents a comparison of different filters
for structural breaks in AR(1) models based on the Mean Squared Error (MSE), where
the error is the difference between the estimated state and the true state rt − εt, for two
different experiments. In both Case 1 and Case 2 the MSE is lowest for the M-Filter.
This can be contributed to the fact that it is more precise in adapting after the shift(s),
even though it requires a bit more time in adapting at the beginning of the sample. The
M-Filter importance density adapts quickly at each time period after the break(s).

We next compare the weights obtained by APF and M-Filter visually. Figures 3(a)–3(c)
show the model weights for Case 1. The switch in the data generating process from Model
1 to Model 5 makes it difficult for the BPF and APF to adjust quickly and one can see
that the M-Filter is faster in picking up the break due to the updated candidate at each
time period. Figures 3(d)–3(f) illustrate Case 2, in which there are two switches in the
data generating process, first from Model 1 to Model 5, and then further to Model 3. The
M-Filter is the fastest in picking up the ‘breaks’ (particularly the second one) which again
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Figure 3: Filtered model probability weights (red lines) using the Bootstrap Particle Filter (BPF),
the Auxiliary Particle Filter (APF), and our M-Filter together with the 95% credibility
region (gray area) for models 1 to 5 (different rows). Top (case 1): the true model has
state r̃1,t = 0.1 + 0.1r̃1,t−1 + ηt, ηt ∼ N(0, 1) for t = 1, . . . , 100, and model r̃5,t = 0.5 +
0.5r̃5,t−1 + ηt, ηt ∼ N(0, 1) for t = 101, . . . , 200; bottom (case 2): the true model has state
r̃1,t = 0.1 + 0.1r̃1,t−1 +ηt, ηt ∼ N(0, 1) for t = 1, . . . , 100, model r̃5,t = 0.5 + 0.5r̃5,t−1 +ηt,
ηt ∼ N(0, 1) for t = 101, . . . , 150 and model r̃3,t = 0.3 + 0.3r̃3,t−1 + ηt, ηt ∼ N(0, 1) for
t = 151, . . . , 200.
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(c) M-Filter weights (Case 1)
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(d) BPF weights (Case 2)
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(e) APF weights (Case 2)
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(f) M-Filter weights (Case 2)
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can be contributed to the updated candidate at each time period.

5 Empirical application using return data on ten US

industries, 1926-2015

Our empirical analysis intends to yield valuable information on three central issues of
this paper. First, does averaging of FDCs over sets of models and strategies pay off in
terms of improved features of expected return and risk features? Second, does there exist
useful insight from studying the dynamic patterns of the weights in these combinations,
for instance, in quiet and in more volatile periods or in terms of improving the set of
models and strategies? Third, what is the effect of misspecification of the model and/or
strategy set on the results? More specifically, can we identify ‘bad’ models and strategies,
and what is the effect of removing ‘bad’ models and strategies? Can we use diagnostic
learning, economic information and/or posterior residual analysis to improve modeling
and strategy choice? We note that issue two relates to learning through updating available
past information while issue three deals with the robustness of our results with respect to
misspecification.

Expected return and risk features using individual models and strategies: As
a preliminary step we consider the performance of FDCs of three individual models: the
vector autoregressive model with normal disturbances (VAR-N), the stochastic volatility
model (SV), and the dynamic factor model with K = 4 factors and L = 2 lags (DFM(4,2));
all directly connected with two individual strategies (M.M. and R.M.) as discussed in
section 3. We analyze the expected return and risk features of the density function of
realized returns, rrealt , see equation (8), using the following four indicators: expected mean
return, volatility, Sharpe Ratio and largest loss during the investment period. The results
are presented in Table 3 and compared with the results of a baseline S.M. strategy presented
in Jegadeesh and Titman (1993), Chan et al. (1996) and Jegadeesh and Titman (2001).

The features reported in Table 3 lead to three conclusions. First, given the substantial
differences between the results of the alternative model-strategy combinations for the dif-
ferent indicators, there does not exist a clear winning model-strategy combination in terms
of all four indicators. Second, the results of the benchmark S.M. strategy are dominated by
the three model-strategy combinations in several indicators with the SV model combined
with R.M. outperforming the S.M. strategy in all indicators. Clearly, it pays to make use
of a particular econometric model with a stochastic volatility component combined with an
effective strategy. Third, there is one combination of a model and a strategy that clearly
performs worst: the DFM-N(4,2) model in combination with the M.M. strategy is the only
combination that yields a negative average return. This may be caused by a type of model
misspecification that is particularly harmful for the M.M. strategy, although more research
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Table 3: Features of expected return and risk for the realized return densities using individual models
and strategies.

Model Momentum (M.M.) Residual Momentum (R.M.)
Model Mean Vol. S.R. L.L. Mean Vol. S.R. L.L.

VAR-N 0.02 5.0 0.005 -24.1 0.09 5.8 0.015 -35.0
SV 0.10 5.1 0.019 -34.7 0.11 5.6 0.019 -26.0

DFM-N(4,2) -0.05 5.5 -0.009 -27.4 0.12 5.4 0.022 -31.1

Standard Momentum (S.M.)
Model Mean Vol. S.R. L.L.

− 0.09 5.7 0.016 -26.2

Note: Bold values indicate an ‘equal or better’ value compared to the benchmark of S.M. We report S.M.
results in a single row as this strategy is not based on a model.

is required for the specific reasons for this very poor performance. More detailed results on
the three issues are presented in the on-line Appendix. These conclusions lead naturally
to our main topic of exploring the FDCs of a set of models and strategies.

5.1 Returns from FDCs using sets of models and strategies

We report the time-varying performances of several features of FDCs using sets of models
and strategies in three stages. We start with the three basic model structures, VAR-N,
SV and DFM-N(4,2), that constitute together the general FAVAR-SV(4,2) class. We are
interested in the contribution of each component to the total results. Next, these three
models are considered as a set and combined with the set of M.M. and R.M. strategies.
In the second stage, we investigate whether it is better to consider a combination of two
flexible models than to consider a combination of three less advanced models. We assess
whether the combination of two flexible models, which are directly connected with the set
of M.M. and R.M. strategies, gives improved results in terms of expected return and risk.
Third, we explore whether it is effective in terms of results to choose only one model but
with a very flexible parametric structure. This is the FAVAR-SV(1-4,1-2), optimized over
the number of factors and lags, see below, and directly connected with the set of M.M.
and R.M. strategies.

Features of expected return and risk: The four features of the empirical distributions
of realized returns from different sets of models and strategies are presented in Table 4.
First, in the top panel it is shown that a FDC of three basic models and two strategies
leads to improved risk features compared to individual models combined with individual
strategies. The volatility and largest loss of the set of three models and two strategies are
typically lower than those of the individual models. Such improvement in risk features
stems from the combination of models as well as strategies. Second, the FDC of the set of
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three models and two strategies does not give substantially better expected mean returns
than using individual models directly connected with a set of strategies. This is apparently
due to the weight of the ‘bad’ DFM-N(4,2) model. As shown in Figure 4(a), to be discussed
in more detail below, there does not exist a strong learning about the weight of the so-called
‘bad’ model DFM-N(4,2) in the sense that this weight remains substantial in the FDC of
this set of models and strategies. We conclude that, for our data and model-strategy set,
the learning mechanism for the combination weights does not effectively lower the weight
of the poor performing model over time.

Given the diversity in expected return and risk results with the FDC of the set of three
basic models and two strategies components, it may be a good step to obtain ‘better’
results by exploring a smaller set of more flexible models. As a next stage in our analysis,
we explore the set of a VAR-SV and a DFM-SV model, where for the latter model we
consider the case where the FDC is optimized over the number of factors from 1 to 4 and
number of lags from 1 to 2. We refer to the optimized DFM-SV model as DFM-SV(1-4,1-
2). The middle panel in Table 4 presents the results of the FDC of this set of models and
the two strategies. Our conclusion is that the set of two flexible models and two strategies
leads to better results than the set of three basic models and two strategies. Note that
the results for the FDC of the set of two strategies and individual models indicate that
VAR-SV good mean return features but less so for risk features while for the case of the
model DFM-SV(1-4, 1-2) the opposite holds. Thus, if an investor is interested in the joint
behavior of expected return and risk, then averaging over a set of flexible models and
strategies is beneficial.

In the third panel we report mean return and risk features of the empirical distribution
of realized returns of one model with a very flexible parametric structure, specified as a
FAVAR-SV model and optimized over 4 factors and 2 lags, directly connected with the two
investment strategies, leading to 16 forecast densities. Our conclusion is that choosing a
set of one very flexible model and two strategies implies better mean return but also more
risk than the set of two flexible models and two strategies.

Equal weights: In the bottom panel of Table 4 the results of the equal weight scenario
are shown. Equal weights perform, for our data and model-strategy set, worse than time-
varying weights in terms of mean returns and Sharpe ratios. Equal weights also perform
worse than S.M. in terms of mean return. We note that our FDC procedure involves a
portfolio optimization that maximizes the return forecasts which is different from the equal
weights scenario.

When one compares equal weight results with those of the top, second and third panel,
then it is seen that equal weights perform worse in terms of mean returns. Equal weights
do lead to smaller variance and lower loss than time-varying weights for several models and
also compared to S.M. The issue of diversification plays a role here. Further, the choice of
the model set remains important, in both cases of equal weights and time-varying weights.
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Table 4: Features of expected return and risk for the realized return densities using sets of models
and strategies.

Model Strategy Mean Vol. S.R. L.L.

Combination of three basic models and two strategies

VAR-N & SV M.M. & R.M. 0.10 3.9 0.025 -23.0
& DFM-N(4,2) (0.01,0.18) (3.6,4.2) (0.002,0.047) (-28.8,-17.5)

Combination of strategies per model

VAR-N M.M. & R.M. 0.09 4.7 0.019 -32.6
(-0.03,0.20) (4.0.4,5) (-0.007,0.043) (-35.6,-20.9)

SV M.M. & R.M. 0.13 4.3 0.032 -22.2
(-0.02,0.28) (3.9,4.6) (-0.005,0.065) (-29.9,-16.1)

DFM-N(4,2) M.M. & R.M. 0.03 4.3 0.006 -24.4
(-0.12,0.17) (4.0,4.7) (-0.028,0.041) (-31.1,-16.8)

Combination of two flexible models and strategies

VAR-SV M.M. & R.M. 0.15 3.7 0.041 -21.6
& DFM-SV(1-4,1-2) (0.08, 0.22) (3.5, 3.9) (0.021, 0.061) (-26.4, -16.4)

Combination of strategies per model

VAR-SV M.M. & R.M. 0.23 4.5 0.051 -37.2
(0.11, 0.35) (4.2, 4.9) (0.024, 0.080) (-37.3, -36.8)

DFM-SV(1-4,1-2) M.M. & R.M. 0.06 3.4 0.018 -14.4
(0.00, 0.12) (3.2, 3.5) (0.000, 0.036) (-20.1, -11.0)

Combination of one very flexible model and two strategies

FAVAR-SV(1-4, 1-2) M.M. & R.M. 0.18 4.5 0.039 -34.8
(0.14, 0.22) (4.5, 4.6) (0.031, 0.048) (-35.0, -34.6)

Benchmark models and strategies

− S.M. 0.09 5.7 0.016 -26.2

VAR-N, SV, DFM-N(4,2) M.M. & R.M. 0.07 3.5 0.018 -21.4
(equal weight) (equal weight) (-0.01,0.13) (3.3,3.8) (-0.002,0.038) (-26.4,-16.2)

VAR-SV,DFM-SV(1-4,1-2) M.M. & R.M. 0.07 3.3 0.022 -13.7
(equal weight) (equal weight) (0.03,0.11) (3.2,3.4) (0.01,0.033) (-17.8,-10.9)

FAVAR-SV(1-4, 1-2) M.M. & R.M. 0.05 3.6 0.013 -21.6
(equal weight) (equal weight) (0.02,0.07) (3.5,3.7) (0.005,0.021) (-24.6,-19.5)

Note: 90% credible intervals are reported in parentheses. Bold values indicate an ‘equal or better’ value
compared to the benchmark of S.M. Equal weight denotes equally weighted models and strategies.

22



Figure 4: Posterior means of model weights from FDCs using different sets of models and strategies
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(a) Model weights of the combination of VAR-N, SV and DFM(4,2) and two strategies M.M. and R.M.
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(b) Model weights of the combination of DFM-SV(1-4,1-2), VAR-SV and two strategies M.M. and R.M.

Figure 5: Posterior means of strategy weights from FDCs using different sets of models and strategies
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(a) Strategy weights of the combination VAR-N, SV and DFM(4,2) and two strategies M.M. and R.M.
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(b) Strategy weights of the combination DFM-SV(1-4,1-2), VAR-SV and two strategies M.M. and R.M.
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(c) Strategy weights of the combination 8 FAVAR-SV models and two strategies M.M. and R.M.
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Therefore, sensible a priori model selection and/or trimming of models on the basis of the
results can be very beneficial. Another general conclusion is that the optimal choice of the
model-strategy set depends on the preference function of the investor. In this paper we
restrict ourselves to sketch results from different scenarios in terms of several features of
forecast densities of portfolio returns.

Remark: Given that we obtain complete densities we also report the 90% credible intervals
of the four criteria. It is seen that these intervals become smaller going from the set of
three basic models to the set of two more flexible models, the set of one very flexible
model and even to the equal weights case of the FAVAR-SV(1-4,1-2) model. Thus a very
flexible model structure and a priori restrictions on the parameters (fixed weights) lead to
more accurate estimation results. This is also relevant input information for the preference
function of an investment manager.

Learning about weight dynamics and their uncertainty: It is clearly of great
importance for understanding the results on expected returns and risk to explore how these
features move over time. This depends on the time behavior of the FDC weights for models
as well as strategies.7 There exists time variation in the FDC weights of the two strategies
as well as time variation in the FDC weights of the different sets of models. Posterior means
of the model weights, presented in Figure 4, show clear time variation suggesting that
autocorrelation, cross-correlation and time varying volatility data patterns are important
for this weight behavior.8 Similarly, posterior means of strategy weights, presented in
Figure 5, change also substantially over time. These changes are more pronounced than
those for the density combinations. A possible reason for this is that the difference between
the strategies is more pronounced than the difference between the models which are all
nested members of the general FAVAR-SV class of models.

We present the uncertainty in strategy weights in Figure 6 based on their 60% credibility
intervals. The set of three basic models in Figure 6(a) generally leads to higher uncertainty,
i.e. wider credibility intervals, than the uncertainty of two flexible models in Figure 6(b).
Comparison of the two flexible models in Figure 6(b) and one model FAVAR-SV(1-4,1-2)
in Figure 6(c) does not lead to such a clear distinction. Particularly for FAVAR-SV(1-
4,1-2) in Figure 6(c), the importance of the R.M. strategies at the beginning of the recent
financial crisis is confirmed with relatively low uncertainty in strategy weights.

It is also interesting and relevant for policy recommendation to investigate the behavior

7Naturally, the choice of the particular momentum strategy or any other portfolio strategy and their
implied constructed weights is also important. This is left as a topic for further research.

8We note that the weights per number of factors in FAVAR-SV models also change over time, as
presented in Table D.9 in the on-line Appendix. In the recent period models and strategy combinations
with a single factor have higher weights than in earlier periods. This finding is in line with the relatively low
canonical correlations between returns at the end of the sample compared to the beginning of the sample,
shown in Figure 1(b). However, a single one of the considered weights does not seem to be sufficient for
these data.
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Figure 6: Posterior means and 60% CI for FDC strategy weights using different model and strategy
combinations.

(a) Combination of VAR-N, SV and DFM(4,2) and two strategies M.M. and R.M.

(b) Combination of DFM-SV(1-4,1-2), VAR-SV and two strategies M.M. and R.M.

(c) Combination of 8 FAVAR-SV models and two strategies M.M. and R.M.

Figure 7: Model and strategy incompleteness measure (standard deviation of residuals).
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of the R.M. weights versus the M.M. weights. In the best performing model set, that is
the set consisting of the VAR-SV and DFM-SV(1-4,1-2), it is seen that the M.M. strategy
remains important also in the recent crisis period. It is noteworthy that for the basic
three models and the one very flexible model, the R.M. strategies are more important,
particularly, around the 1990s and at the beginning of the recent financial crisis around
2008. This suggests that the R.M. strategy performs better in volatile periods. The R.M.
strategy may be more robust in case of misspecification, which we leave as a topic for
further research.

Our findings on the strategy weights relate to Jegadeesh and Titman (2001) and Blitz
et al. (2011). Jegadeesh and Titman (2001) show that the momentum effect, indicated
by the M.M. strategy, is apparent before and after the 1990s. Our results confirm this
effect. Blitz et al. (2011) find that R.M. strategy is less affected by the market compared
to M.M. during the financial crisis of 2008. The increased weights for R.M. in Figure 5,
and the tight credibility intervals in Figure 6(c) confirm such good performance of the
R.M. strategy around 2008. One explanation for this result is that the R.M. strategy is
intended to take advantage of the, in absolute sense, large residuals.

A more detailed analysis of the dynamics and learning of weights is left for further research.
However, it is already seen that the dynamic patterns in model and strategy weights are
very relevant pieces of information for portfolio analysis. A second important conclusion
is that the learning mechanism of the method does not contain sufficient information to
unambiguously give ‘bad’ models a very low weight when one moves through the period of
observation. Diagnostic information about posterior residual behavior and poor economic
performance may be useful as a complimentary source of information. This is our next
topic.

Misspecification and diagnostic learning: The model and strategy sets that we con-
sidered are potentially misspecified. An important issue is how to measure this. In the
statistical literature, there exist several diagnostic tests and methodologies to determine the
correct number of relevant components, see McLachlan and Peel (2004, chap. 6), Frühwirth-
Schnatter (2006, chap. 4) and for a recent analysis Baştürk et al. (2018). In the present
paper, we follow two approaches. One is based on trimming the set of models based on
their economic results, for instance, the effect that a “bad” model has on returns, like the
DFM(4,2) model, as we illustrated before. This approach is related to the economics and
finance literature that we discussed. A second measure follows from taking a forecasting
approach. We extend the definition of σ2

ε from section 4.2 to forecasting and take the stan-
dard deviation of the forecast residuals as measure of incompleteness. Clearly, even when
the model set is perfectly specified then this measure will be positive due to forecast errors.
However, it serves a useful purpose as a relative measure comparing the performance of
alternative sets of models and strategies.

Figure 7 presents the standard deviations of the forecast residuals of the FDCs in sec-
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tion 4.2. Standard deviations of the set of three basic models and two strategies are
generally higher than those of the other two sets that we have considered. This confirms
our earlier conclusion about the better fit of the flexible models compare to the basic three
models. Comparison of the two flexible mixtures, VAR-SV,DFM-SV(1-4,1-2) and FAVAR-
SV(1-4,1-2) does not lead to a clear result in terms of being more robust with respect to
model incompleteness. It is interesting to observe that periods with high standard devia-
tions, such as the period between 2009 and 2012, can be caused by high volatility in the
data as well as by a misspecified model and strategy set. Interestingly, these periods also
correspond to relatively high variations in the weights of strategies. This suggests that
in case of a misspecified model-strategy set and/or a highly volatile period, it is hard to
tell which model-strategy combination must be followed in order to improve features of
expected return and risk. However, in periods with low standard deviations, which may be
due to low volatility as well as a more complete model-strategy set, it is easier to identify
a single ‘winning strategy’.

6 Conclusions

Our conclusions are presented in two groups. We start with summarizing the major ob-
tained research results. Next, we give conclusions of this paper as an advice about possible
alternative investment scenarios for a professional organization in financial investment like
a pension fund.

We introduced a dynamic asset-allocation approach which is specified as a forecast density
combination of a set of models and momentum strategies that updates the portfolios at
every decision period based on learning about their past performance. For efficient and
robust Bayesian estimation of the resulting nonlinear state space model a new and efficient
non-linear filter is introduced, based on the MitISEM approach, see Hoogerheide et al.
(2012). It is shown that the proposed filter leads to substantial accuracy and speed gains.

Using the returns of ten US industries over an extended period, our results indicate that in
volatile periods with substantial shocks it pays to make use of models that capture short-
run properties through stochastic volatility components, while in quiet periods relatively
less complex models receive a relevant weight. Regarding the two momentum strategies,
we find that a residual momentum strategy that ‘learns’ from past forecast errors has
higher weights compared to the simple model-based momentum strategy in volatile periods.
Further, the set of models with different long and short-run dynamics together with a set
of investment strategies improve two main risk properties, volatility and largest loss, of
realized returns.

There are several opportunities to extend this line of research. One can consider a larger
data set of industries and one can use more (economic) prior information in the model
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selection and in the formulation of (informative) prior distributions. This information may
be particularly helpful when one intends to include mean-variance optimization methods in
the analysis. Another possible extension is to assess alternative sets of combination weights
of models and strategies, see also Johnstone (2012). Further, analysis of the behavior of
stocks within an industry is relevant for more detailed portfolio analysis.

Advice for portfolio strategy of an investment company like a pension fund:
Conditional upon our information set that consists of US industrial returns between 1926M7
and 2015M6 and the proposed set of dynamic models and data driven portfolio strategies,
the properties of mean return and risk of a portfolio improve using our FDCs with sets
of models and strategies. Using single models and strategies, including the standard mo-
mentum strategy, yields lower mean returns and more risk in most cases. Finally, learning
weights of the FDCs of sets of models and strategies should be carefully incorporated in
exploring alternative scenarios of portfolio strategies. The proposed time-varying weights
of the set of two flexible models and two strategies outperforms the equally weighted com-
bination of models and strategies in the sense of better return and risk trade-off. Compared
to fixed weights, these gains are rather pronounced in volatile periods.

We end this paper with the statement that it, of course, depends on the return-risk trade-
off preference of a trader how to deal with these recommendations. We do re-emphasize,
however, that our proposed data-driven FDC approach for combining models and strategies
does not require a fully specified utility function that is particular for a trader.
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Online Appendix

Appendix A Models within the FAVAR-SV class

In this section we describe different model structures used in Section 2 resulting from the
general formulation (1).

A.1 Linear and Gaussian Dynamic Factor Model (DFM)

The linear Gaussian DFM is a special case of equation (1) with β = 0 and a diagonal Σ
matrix:

yt = Λft + εt, εt ∼ N(0,Σ),
ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Q), (A.17)

To estimate this model we assume the following priors.

1) The diagonal elements of Σ have independent Inverse Gamma (IG) priors:

σ2
ε,ii ∼ IG

(vi
2
,
si
2

)
,

where we set vi = 2 and si = 5 for i = 1, . . . , N .

2) The loading parameters have normal priors, Λ ∼ N(µ,C) where µ = 0 and C = I.

3) The prior for the autoregressive parameters Φ = [φ1, . . . , φL] and latent errors vari-
ance Q are diffuse conjugate Normal-Wishart:

Φ|Q ∼ N(0,Q⊗ Ω0), Q ∼ iW(Q0, N +K + 2),

where Φ = vec(Φ) consists of the elements of Φ stacked in a column vector of
length L × K2, where L is the number of lags of the latent factor and K is the
number of factors. As in Bernanke et al. (2005) we set the prior to express the
beliefs that parameters on longer lags are more likely to be zero, in the spirit of the
Minnesota prior. The diagonal elements of Q0 are set to the residual variances of
the corresponding univariate autoregressions, σ̂2

η,kk for k = 1, . . . , K. The diagonal
elements of Ω0 are set on k lagged j’th variable in i’th equation equals σ2

i /kσ
2
j .

Defining Λi = (λi,1, . . . , λi,k) for i = 1, . . . , N the Gibbs sampling steps are as follows.
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1) The full conditional posterior for the elements of Σ reduces to a set of N independent
inverse-gamma distributions with:

σ2
ε,ii ∼ IG

(
vi + T

2
,
vis

2
i + di
2

)
,

where di =
∑T

t=1(yit − Λifit)(yit − Λifit)
′
, i = 1, . . . , N .

2) The draws of the loading parameters which satisfy the related restrictions are gen-
erated as follows.

a) For i = 1, . . . , K, draw Λi ∼ N(mi,Ci)I(λii > 0), where mi = Ci(C
−1
i µ

i
+

σ−2ε,iif
′
iyi) and C

−1
i = C−1i + σ−2ε,iif

′
ifi

b) For i = K + 1, . . . , N draw Λi ∼ N(mi,Ci) where mi = Ci(C
−1
i µ

i
+ σ−2ε,iif

′
iyi)

and C
−1
i = C−1i + σ2

ε,iif
′
ifi

3) The posterior of Φ and Q follows from the standard VAR form that we adopt, which
can be estimated equation by equation to yield the following simulation scheme.

a) Draw Q from iW(Q̂, T +K+N +2), where Q̂ = Q+Γ̂
′
Γ̂+Φ̂

′
[Ω0 +(F̂

′

tF̂t)
−1]−1Φ̂

and Γ̂ is the matrix of OLS residuals.

b) Draw Φ from the conditional normal distribution of the form:

Φ ∼ N(vec(Φ̃),Q⊗ Ω̃), (A.18)

where Φ̃ = Ω̃(f̂
′
t−1f̂t−1)Φ̂ and Ω̃ = (Ω−10 + f̂

′
t−1f̂t−1)

−1.

5) Draws the latent states ft using the FF-BS algorithm as described in Carter and
Kohn (1994).

6) Go to step 1.

A.2 Linear Dynamic Factor Model with Stochastic Volatility
(DFM-SV)

We obtain the DFM-SV by setting β = 0 in equation (1):

yt = Λft + εt, εt ∼ N(0,Σt),
ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Q),

(A.19)
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and specifying a time-varying variance-covariance matrix:

Σt =


σ2
11,t 0 . . . 0
0 σ2

22,t . . . 0
...

...
. . .

...
0 0 . . . σ2

NN,t

 . (A.20)

We assume that the log volatilities hit = log(σ2
ii,t) follow a stationary and mean reverting

process
hit = µi + ψihit−1 + ζt, ζt ∼ N(0, γii), ψi ∈ (−1, 1), µi ∈ R.

Starting from equation (A.19) and rearranging, we get εt = yt − Λft = y∗t . Taking the
squares plus an offset constant we obtain

y∗∗t = log[(y∗t )
2 + c̄],

y∗∗t = 2ht + et,

ht = µ+ψht−1 + ξt, ξt ∼ N(0,Γ),

(A.21)

where et = log(εt) follows the χ2(1) distribution. Therefore, the standard Kalman filter
and smoother cannot be adopted, cf. Carter and Kohn (1994). To solve this problem Kim
et al. (1998) employ a data augmentation approach and introduce a new state variable sT =
{s1, . . . , st}, so that the linear, non-Gaussian state space model (A.21) can be rewritten as
conditionally linear Gaussian. Then, the distribution of et can be approximated as

et ≈
7∑
j=1

qjN(τj − 1.2704, ν2j ),

where τj, ν
2
j and qj for j = 1, . . . , 7 are constant specified in Kim et al. (1998). Conditionally

on the state st+1 = j, the errors et can be sampled as

et|st+1 = j ∼ N(τj − 1.2704, ν2j ),

Pr(st+1 = j) = qj.

The draws from the sequence of states st can be obtained by using:

Pr(st = j|y∗∗t ,ht) ∝ qjfN(y∗∗t |2ht + τj − 1.2704, ν2j ), (A.22)

where fN(·) denotes the kernel of a normal density and j = 1, . . . , 7, t = 1, . . . , T . Condi-
tional on s1:T the model is linear Gaussian and the algorithm of Carter and Kohn (1994)
can be used.

The priors remains as described before, with the only difference related to the SV param-
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eters, µ, ψ and variance of the errors Γ. For the the two former we specify(
µi
ψi

)
∼ N

[(
mµi

mψi

)
,

(
Vµi

0
0 Vψi

)]
,

ψi ∈ (−1, 1),

while for γ−2ii we put
γ−2ii ∼ G(1/kγ, 1).

For the hyperparameters we follow Pettenuzzo and Ravazzolo (2016) and set kγ = 0.01,
mµi

= 0, mψi
= 0.95, Vµi

= 10 and Vψi
= 1.0e−06. These values imply a strong autocorre-

lation structure for hit, which is typical for financial time series.

For this model, the Gibbs sampling steps are as follows.

1) Initialize f
(0)
t , h

(0)
t , Λ

(0)
t ,Σ(0),Q(0).

2) Draw latent factors ft from p(ft|,Λ,Q,Σt,ht) using the FF-BS algorithm described
in Carter and Kohn (1994).

3) Conditionally on ht and Λ, draw the indicator variable st for the mixture according
to (A.22).

4) Draw a sequence of stochastic volatilities ht, t = 1, . . . , T from p(ht|Λ, ft, st,µ,ψ)
from the conditional linear and Gaussian system using the method of Carter and
Kohn (1994).

5) Draw the stochastic volatility variances γ2ii from p(γ2ii|hit, µi, ψi) from the following
posterior:

γ−2ii ∼ G

[kγ +
∑T−1

t=1 (hit+1 − µi − ψihit)2

t

]−1
, T

 .

6) Draw the SV parameters jointly:(
µi
ψi

)
∼ N

([
m̄µi

m̄ψi

,

]
V̄(µi,ψi)

)
× ψi ∈ (−1, 1),

where

V̄(µi,ψi) =

{[
V−1µi 0

0 V−1ψi

]
+ γ̄−2ii

T−1∑
t=1

[
1
hit

]
[1 hit]

}
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and [
m̄µi

m̄ψi

]
= V̄(µi,ψi)

{[
V−1µi 0

0 V−1ψi

] [
mµi

mψi

]
+ γ̄−2ii

T−1∑
t=1

[
1
hit

]
hit+1

}
.

7) Go to step 2.

A.3 Linear Dynamic Factor Model with Two Stochastic Volatil-
ity Components (DFM-SV2)

We obtain the DFM model with two stochastic volatilities by assuming β = 0 in equation
(1) and by defining the following time-varying covariance matrices for the idiosyncratic
and latent errors:

yt = Λft + εt, εt ∼ N(0,Σt),
ft = φ1ft−1 + . . .+ φLft−L + ηt, ηt ∼ N(0,Qt),

(A.23)

with the idiosyncratic errors defined as in equation (A.20) and latent error variances is
given by:

Qt =


η211,t 0 . . . 0

0 η222,t . . . 0
...

...
. . .

...
0 0 . . . η2KK,t

 , i = 1, . . . , K, (A.24)

where log volatilities kit = log(η2ii,t) follow a stationary and mean reverting process:

kit = ωi + βikit−1 + ξit, ξit ∼ N(0, σ2
ξi

).

The estimation of this model proceeds as before with an added step in the Gibbs sampler
to extract the latent time-varying variance.

A.4 Factor Augmented VAR models with Stochastic Volatility
Components (FAVAR-SV2)

Assuming in equation (1) β 6= 0 and a time-varying variance-covariance matrix for the
idiosyncratic and latent errors we obtain the FAVAR-SV2 model given by:

yt = βxt + Λft + εt εt ∼ N(0,Σt),

ft = φ1ft−1 + . . .+ φLft−L + ηt ηt ∼ N(0,Qt). (A.25)
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The FAVAR model extends the state equation by defining xt as a vector of the lagged
dependent variables. This leads to a VAR form in the state equation of (A.25):(

ft
xt

)
= Φ̃1

(
ft−1
xt−1

)
+ . . .+ Φ̃L

(
ft−L
xt−L

)
+ ε̃t,

see also Stock and Watson (2005). Conditional on the latent states, the estimation of
the VAR parameters β is similar to that of the univariate linear regression model, hence
Bayesian inference is standard. The two proposed FAVAR models are defined by a stochas-
tic volatility component in the idiosyncratic disturbances (FAVAR-SV) and a stochastic
volatility components in the idiosyncratic and latent disturbances (FAVAR-SV2). Note
that the FAVAR-SV (and FAVAR-SV2) model simplifies to a DFM model in Section A.1
when β = 0, a VAR model if factor coefficient Λ = 0, and a stochastic volatility model
when both β = 0 and Λ = 0. Hence DFM, VAR and SV models listed together consti-
tute parts of the FAVAR-SV (and FAVAR-SV2) models. We refer to the earlier sections
of this appendix for the inference on the SV components conditionally on the remaining
parameters.
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Appendix B The M-Filter

Below we present the details of the recursion for the proposed M-Filter from Section 4. In
the description we treat the estimated parameter vector θ as known and we omit it for the
sake of notation. For a detailed discussion of the general MitISEM procedure we refer to
Hoogerheide et al. (2012).

Algorithm Below we present the proposed M-Filter in algorithmic form.

1) Initialization. Draw α
(j)
0 ∼ p(α0) for j = 1, . . . ,M .

2) Recursion. For t = 1, . . . , T construct the candidate density gt(αt) using the Mi-
tISEM algorithm as follows.

a) Initialization: Simulate draws α
(j)
t , j = 1, . . . ,M , from a ‘naive’ candidate

distribution with density g
(0)
t (·) (e.g. a Student’s t distribution with v = 5

degrees of freedom).

Compute the corresponding IS weights:

w̃
(j)
t =

p(rt|α(j)
t )p(α

(j)
t |α

(j)
t−1)

g
(0)
t (α

(j)
t )

,

where the target density kernel has the form p(rt|αt)p(αt|α(j)
t−1), and normalize

them to w
(j)
t .

b) Adaptation: Use the draws α
(j)
t and the weights w̃

(j)
t from the naive dis-

tribution g
(0)
t (·) to IS estimate the mean and covariance matrix of the target

distribution. Use these estimates as the mode and the scale matrix of the Stu-
dent’s t adapted density g

(a)
t (·). Draw a sample α

(j)
t from g

(t)
t (·) and compute

the IS weights for this sample.

c) Apply the the IS weighted EM (ISEM) algorithm given the sample from

g
(a)
t (·) and the corresponding IS weights. The output consists of the new can-

didate density with h = 1 component g
(H)
t (·) with the optimized parameters.

Draw a new sample α
(j)
t from this candidate, compute the corresponding IS

weights. Calculate the coefficient of variation CV (H) of the normalized weights
w

(j)
t , j = 1, . . . ,M .

d) Iterate on the number of mixture components. Given the current

mixture of h components g
(H)
t (·) add the next component to the mixture in the

following way.
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d.1) Use a chosen fraction (e.g. 0.1) of the draws α
(j)
t from the current mixture

corresponding to the highest IS weights to IS estimate the mean and vari-
ance. Use these parameters as the starting mode and scale parameters for
the new mixture component, µh+1 and Σh+1.

d.2) Update the mixture probabilities: assign the starting value for the new
component probability ηh+1 (e.g. 0.1) and multiply the old mixture proba-
bilities η1, . . . , ηh by (1 − ηh+1). Set the number of degrees of freedom for
the new component νh to a specified fixed value (e.g. 5).

d.3) Given the starting parameters of the new mixture, adapt the candidate for
the model parameters by performing ISEM based on the draws from the
previous mixture g

(H)
t (·) and the corresponding weights.

d.4) Draw α
(j)
t from the new mixture g

(h+1)
t (·) and evaluate the corresponding

normalized importance weights w
(j)
t , j = 1, . . . ,M .

d.5) Calculate the coefficient of variation CV (h+1) of the normalized weights w
(j)
t ,

j = 1, . . . ,M .

e) Assess convergence of the candidate density’s quality by inspecting whether
the relative change between CV (H) and CV (h+1) is greater than the chosen
threshold (e.g. 0.01) and return to step d) unless the algorithm has converged.

3) Draws. Draw α
(j)
t from the constructed density g

(H)
t (α

(j)
t |α

(j)
t−1) and approximate

E[ht(αt)|r1:T ] by:

ĥ(αt) =
M∑
j=1

w
(j)
t h(α

(j)
t ).

4) Likelihood Approximation. The approximation of the log likelihood function is
given by:

log p̂(r1:T ) =
T∑
t=1

log

(
1

M

M∑
j=1

w̃
(j)
t

)
.
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Appendix C Simulation results for M-filter

In this Appendix we report some simulation results for the M-Filter, in all the examples we
are interested in the estimation of the target function ht(α

(j)
t ) = αt that is the posterior

mean of the latent state. We compare four filters, the Kalman filter (KF), the Bootstrap
Particle Filter (BPF), the Auxiliary Particle filter (APF) and the M-Filter. All the Monte
Carlo experiments presented in this section are based on R = 100 replications with T = 100
observations each. For the BPF, APF and M-Filter we use M = 50, 000 particles. In the
M-Filter the particles correspond to draws from the proposal density.

C.1 Local level model

The first model we consider is a standard local level model:

yt = αt + εt εt ∼ N(0, σ2
ε),

αt = αt−1 + ηt ηt ∼ N(0, σ2
η).

(C.26)

that is a linear and Gaussian model often used as benchmark for comparing filtering meth-
ods. In this case KF provides the sequential state distribution in analytical form and is
the optimal filter.

In the simulations experiments, we fix the latent state variance as σ2
η = 0.1 and we define

four different levels for the state variance σ2
ε , corresponding to four levels of the Noise to

Signal Ratio (NtS): 0.1, 0.5, 1 and 2.5. We note that the exact likelihood of the model in
equation (C.26) can be calculated using the KF, and we can compare the exact likelihood
of this model with the remaining non-linear filters. This allows to assess the degree of the
likelihood bias in the non-linear filters, including the proposed M-Filter.

Table C.5 reports the results for the model in equation (C.26). KF filter is the best filter,
as expected, in terms of the minimum bias and the smallest computing time. The results of
the non-linear filters, however, are in line with those of KF in terms of the bias measures.
The proposed M-Filter performs similarly to the BPF and the APF but has a lower bias in
the estimate likelihood especially for smallest NtS ratio of 0.1. In all cases the computing
time is lower then the BPF and APF.

C.2 Stochastic volatility model

The second model is the stochastic volatility (SV) model (Kim et al., 1998) given by:

yt = e(αt/2)εt εt ∼ N(0, σ2
ε),

αt = µ+ φαt−1 + ηt ηt ∼ N(0, σ2
η),

(C.27)
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Table C.5: Monte Carlo results for R =100 replications of the linear and Gaussian model of equation
(C.26) with T=100. Kalman Filter (KF), Bootstrap Particle Filter (BPF), Auxiliary
Particle Filter (APF) and MitISEM Filter (M-Filter) with 50,000 particles. The table
reports Log-Likelihood Bias (LLB) with respect to KF. Absolute deviation defined as

Bias = 1/T
∑T

t=1

(
1/R

∑R
i=1 |α̃t,i − αt,i|

)
relative to the KF. The table also reports the

variability defined as V ar = 1/T
∑T

t=1

(
1/R

∑R
i=1(α̃t,i − αt,i)

2
)

relative to the KF. The

final column reports the computing time in seconds for the four filters.

NtS 0.1 0.5 Time with NtS
Model LLB Bias Var LLB Bias Var 0.1 0.5
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.01 0.01
BPF -48.93 1.22 1.48 -19.43 1.26 1.62 33.71 35.55
APF -13.87 1.00 1.00 -9.56 1.01 1.02 35.54 37.67
M-Filter -10.40 1.00 1.01 -9.52 1.01 1.02 12.83 12.81

NtS 1 2.5 Time with NtS
Model LLB Bias Var LLB Bias Var 1 2.5
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.01 0.01
BPF -37.85 1.31 1.71 -21.16 1.43 2.04 35.22 34.53
APF -10.43 1.00 1.00 -9.05 1.00 1.00 37.29 35.72
M-Filter -10.18 1.01 1.01 -9.39 1.00 1.01 12.67 12.13

where ηt and εt are independent and yt is the observed series. Due to the non-linear struc-
ture of the observation equation the analytical form for filtering and predictive densities
do not exist in this model.

In the simulations, we fix the autoregressive parameter φ to 0.90, 0.95, and 0.98, which are
in line with the values found in other studies, see for example Aguilar and West (2000).
For each value of φ we consider four values of σ2

η, that corresponds to different coefficient
of variation (CV) of the volatility h = σ2

η exp(αt) defined as:

CV =
Var(h)

E(h)2
= exp

(
σ2
η

1− φ2

)
− 1,

The CV takes values 0.1, 0.5, 1, and 2.5 where high values indicate more strength of the
volatility process and low values indicate that the volatility is close to a constant.

Table C.6 reports the results for the SV model of equation (C.27) with φ = 0.98 and
different values of σ2

η that corresponds to CV = 0.1, 0.5, 1, 2. In all cases the KF is the
worst filter due to being a linear and Gaussian filter. The M-Filter performs similarly
to the BPF and the APF in term of bias and estimation variability. In this model the
computational speed is comparable between the three non-linear filters, namely BPF, APF
and M-Filter.
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Table C.6: Monte Carlo results for R=100 replications of the SV model in equation (C.27)
with T=100, φ = 0.98 and CV = 0.1, 0.5, 1, 2.5. The Kalman Filter (KF), Boot-
strap Particle Filter (BPF), Auxiliary Particle Filter (APF) and MitISEM Filter
(M-Filter) with 50,000 particles. The table reports the absolute deviation Bias =

1/T
∑T

t=1

(
1/R

∑R
i=1 |α̃t,i − αt,i|

)
as a ratio to the KF. The table also report the vari-

ability V ar = 1/T
∑T

t=1

(
1/R

∑R
i=1(α̃t,i − αt,i)

2
)

as a ratio to the KF. The final column

reports the computing time in seconds for the four filters for different CV.

CV 0.1 0.5 Time
Model Bias Var Bias Var 0.1 0.5
KF 1.00 1.00 1.00 1.00 0.01 0.01
BPF 0.24 0.10 0.31 0.12 13.82 13.99
APF 0.25 0.10 0.31 0.13 14.58 14.66
M-Filter 0.26 0.10 0.31 0.14 14.15 12.67

CV 1.0 2.5 Time
Model Bias Var Bias Var 1 2.5
KF 1.00 1.00 1.00 1.00 0.01 0.01
BPF 0.32 0.12 0.29 0.11 13.98 13.88
APF 0.31 0.13 0.29 0.11 14.61 14.70
M-Filter 0.30 0.13 0.28 0.11 13.54 12.96

C.3 Dynamic Factor Model

The last model we examine is a Dynamic Factor Model (DFM) given by:

yt = Λft + εt, εt ∼ N(0,Σ),

ft = Φ1ft−1 + ηt, ηt ∼ N(0,Q).
(C.28)

where yt is a N × 1 vector of time series,the K × 1 vector ft contains unobservable factors
with one lag where Φ1 is a K × K matrix of autoregressive coefficients, Λ is an N × K
matrix of factor loadings. Finally, εt is an N × 1 i.i.d. vector of idiosyncratic disturbances
and ηt is an K × 1 i.i.d. vector of latent disturbances.

The model in equation (C.28) is linear and Gaussian and as in equation (C.26) the KF is
the optimal filter. As before we compare the performance of the non-linear filters against
the KF for different number of factors.

Table C.7 reports the results for the model in equation (C.28) for R = 100 Monte Carlo
replication, N = 20 series and K = 2, 4, 6, 10 factors. In all simulations experiments the
following simulation setting is used: Λ is a N ×K matrix with zeros on the K× (K− 1)/2
upper-diagonal elements and the remaining elements of Λ are simulated from indepen-
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dent standard normal distributions; Φ1 is a diagonal matrix with elements simulated from
independent uniform distributions between [0,1); Σ is a diagonal matrix with elements sim-
ulated from a uniform distribution between [0,2.5]; Q is a diagonal matrix for which the
simulations are performed in two steps. First, we simulate Q̃ = ΨΨ′ where Ψ is a K ×K
upper triangular matrix with elements simulated from independent uniform distributions

in [0,1]. The diagonal elements of Q are defined as the diagonal elements of 0.1× Q̃
−1

.9

Due to the linear and Gaussian model structure in equation (C.28), KF leads to the best
results in terms of the speed and accuracy, but the non-linear filter are in line with the KF.
The M-Filter performs better then both BPF and APF, with substantially lower bias and
variance. The M-Filter has also the lowest likelihood bias compared to the other non-linear
and non-Gaussian filters. In terms of the computing time it increases with the number
of factors for all the filters. In all cases, however, M-Filter requires less computing time
compared than the BPF and APF.

Table C.7: Monte Carlo results for R=100 replications of the DFM with T=100, N = 20 and K =
2, 4, 6, 10 latent factors. Kalman Filter (KF), Bootstrap Particle Filter (BPF), Auxiliary
Particle Filter (APF) and MitISEM Filter (M-Filter) with 50,000 particles. The table
reports Log-Likelihood Bias (LLB) with respect to KF. Absolute deviation defined as

Bias = 1/T
∑T

t=1

(
1/R

∑R
i=1 |α̃t,i − αt,i|

)
relative to the KF. The table also reports the

variability defined as V ar = 1/T
∑T

t=1

(
1/R

∑R
i=1(α̃t,i − αt,i)

2
)

relative to the KF. The

final column reports the computing time in seconds for the four filters and for K =
2, 4, 6, 10.

Factors 2 4 Time
Model LLB Bias Var LLB Bias Var 2 4
KF 0 1 1 0 1 1 0.01 0.01
BPF -77.42 1.15 1.33 -145.49 1.15 1.32 708.79 811.73
APF -39.98 1.03 1.05 -164.80 1.05 1.05 836.69 878.13
M-Filter -23.23 1.01 1.02 -23.39 1.00 1.01 106.33 138.18

Factors 6 10 Time
Model LLB Bias Var LLB Bias Var 6 10
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.02 0.02
BPF -193.74 1.16 1.31 -333.33 1.27 1.65 861.10 897.86
APF -309.26 1.07 1.12 -568.18 1.08 1.18 953.72 1011.21
M-Filter -16.97 1.03 1.03 -112.68 1.02 1.03 213.20 402.82

9Our general conclusions hold under different parameter values such as Φ1 = 0.9 and different specifi-
cations for the non-zero elements of Λ.
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Appendix D Additional empirical results

D.1 Return and risk features from model-strategy pairs: addi-
tional results

We first summarize the realized return and risk properties of several model and investment
strategies together with those of the S.M. strategy. We consider eight sets of models
reported in Table D.8.10

Table D.8: List of combined models sorted by increasing complexity.

Abbreviation Description

SV Basic stochastic volatility (SV) model
VAR-N VAR with one lag and normal distributed errors
VAR-SV VAR with one lag with stochastic volatility in errors
DFM-N DFM with normal distributed idiosyncratic errors
DFM-SV DFM with stochastic volatility in idiosyncratic errors
DFM-SV2 DFM with stochastic volatility in idiosyncratic and latent errors
FAVAR-SV Factor Augmented VAR with SV in idiosyncratic errors
FAVAR-SV2 Factor Augmented VAR with SV in idiosyncratic and latent errors

For each DFM model and FAVAR model, we consider 8 different specifications which
correspond to 1-4 factors and 1-2 lags for the factor equation, and two investment strategies
corresponding to M.M. and R.M.. In total, we estimate 40 combinations of DFM and
FAVAR models, 2 VAR models (VAR and VAR-SV), and a SV-model. We restrict the
dynamics of the VAR-class to the case of one lag. Given 10 data series, a VAR(1) gives
already very flexible dynamic patterns (shown in their implied moving averages). For
each one of these models, we construct portfolios based on the M.M. strategy and a R.M.
strategy. Hence we obtain 86 combinations of model and investment strategy specifications.
Realized returns from these 86 combinations are summarized in Appendix D, Table D.9 in
detail. We present a selection of these results in Table D.10.

Mean realized returns differ substantially over alternative model and strategy specifica-
tions, as shown in Table D.10. In terms of these mean realized returns, M.M. strategy
gives poor results for simple VAR-N and DFM-N models. The complex model structures,
DFM-SV2 and FAVAR-SV2 do not necessarily lead to higher mean returns compared to
more basic models DFM-SV and FAVAR-SV for both strategies. That is, the SV2 com-
ponent in factor residuals leads mostly to over-fitting and not to better mean returns.
A second conclusion is that including the SV component in the VAR, the DFM and the
FAVAR models leads to substantially better results for both strategies. It is noteworthy

10For all models, Bayesian inference is performed with 5000 burn-in and 5000 posterior draws.
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Table D.9: Returns and risk for 10 industry portfolios. The table reports the mean, volatility (Vol.),
Sharpe Ratio (S.R.) and the largest loss (L.L.) for realized returns for all models and
strategies in Section 2. The investment strategies are M.M. and R.M.. S.M. strategy has
mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2. Bold values indicate
an ‘equal or better’ value compared to S.M.. K is the number of factors and L is the
number of lags.

Model Momentum Residual Momentum
(K, L) Mean Vol. S.R. L.L. Mean Vol. S.R. L.L.

VAR-N − 0.02 5.0 0.005 -24.1 0.09 5.8 0.015 -35.0
SV − 0.10 5.1 0.019 -34.7 0.11 5.6 0.019 -26.0

VAR-SV − 0.12 4.5 0.028 -20.2 0.13 5.8 0.021 -37.4

D
F

M
-N

(1,1) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.023 -34.4
(1,2) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.022 -34.4
(2,1) -0.13 5.2 -0.024 -25.4 0.10 5.6 0.017 -34.0
(2,2) -0.11 5.2 -0.020 -24.2 0.10 5.6 0.017 -34.1
(3,1) -0.14 5.4 -0.027 -23.7 0.09 5.5 0.017 -33.7
(3,2) -0.08 5.4 -0.016 -23.3 0.08 5.4 0.015 -33.1
(4,1) -0.07 5.5 -0.013 -26.7 0.10 5.4 0.018 -31.3
(4,2) -0.05 5.5 -0.009 -27.4 0.12 5.4 0.022 -31.1

D
F

M
-S

V

(1,1) 0.04 5.0 0.007 -20.0 0.11 5.8 0.019 -37.1
(1,2) 0.04 5.0 0.008 -20.0 0.10 5.8 0.018 -37.1
(2,1) -0.04 5.2 -0.009 -22.0 0.15 5.7 0.026 -36.3
(2,2) -0.05 5.2 -0.009 -22.0 0.15 5.7 0.027 -36.6
(3,1) 0.00 5.2 0.000 -21.2 0.14 5.4 0.026 -33.0
(3,2) 0.03 5.2 0.005 -20.8 0.16 5.4 0.030 -32.8
(4,1) 0.12 5.4 0.023 -20.8 0.05 5.4 0.009 -31.8
(4,2) 0.12 5.4 0.023 -21.7 0.06 5.4 0.011 -31.1

D
F

M
-S

V
2

(1,1) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
(1,2) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
(2,1) -0.01 4.8 -0.002 -22.8 0.08 5.5 0.015 -37.4
(2,2) -0.02 4.8 -0.003 -22.8 0.09 5.5 0.016 -37.4
(3,1) 0.02 5.0 0.005 -27.1 -0.02 5.5 -0.003 -37.4
(3,2) 0.03 5.0 0.006 -27.1 -0.02 5.5 -0.003 -37.4
(4,1) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4
(4,2) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4

F
A

V
A

R
-S

V

(1,1) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(1,2) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(2,1) -0.03 4.9 -0.005 -23.1 0.08 5.5 0.015 -37.4
(2,2) -0.03 4.9 -0.006 -23.5 0.09 5.5 0.016 -37.4
(3,1) 0.09 5.0 0.018 -25.3 -0.02 5.5 -0.005 -37.4
(3,2) 0.08 5.0 0.017 -25.7 -0.02 5.5 -0.004 -37.4
(4,1) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
(4,2) 0.08 5.7 0.015 -32.3 0.02 5.2 0.005 -37.4

F
A

V
A

R
-S

V
2

(1,1) 0.09 4.6 0.019 -18.3 0.06 5.5 0.011 -37.4
(1,2) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
(2,1) -0.03 4.9 -0.005 -23.5 0.09 5.5 0.016 -37.4
(2,2) -0.03 4.9 -0.005 -23.8 0.08 5.5 0.015 -37.4
(3,1) 0.08 5.0 0.017 -25.6 -0.03 5.5 -0.005 -37.4
(3,2) 0.08 5.0 0.017 -25.3 -0.02 5.5 -0.004 -37.4
(4,1) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
(4,2) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4
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Table D.10: Returns and risk for 10 industry portfolios. The table reports the mean, volatility (Vol.),
Sharpe Ratio (S.R.) and the largest loss (L.L.) for realized returns for different models
and strategies in Section 2. S.M. strategy has mean 0.09, volatility 5.7, Sharpe ratio
0.02 and largest loss -26.2. Bold values indicate an ‘equal or better’ value compared to
S.M.. K is the number of factors and L is the number of lags.

Model Momentum (M.M.) Residual Momentum (R.M.)
Model (K, L) Mean Vol. S.R. L.L. Mean Vol. S.R. L.L.

VAR-N − 0.02 5.0 0.005 -24.1 0.09 5.8 0.015 -35.0
SV − 0.10 5.1 0.019 -34.7 0.11 5.6 0.019 -26.0

VAR-SV − 0.12 4.5 0.028 -20.2 0.13 5.8 0.021 -37.4

DFM-N (1,1) -0.04 4.9 -0.009 -20.0 0.13 5.7 0.023 -34.4
DFM-N (4,2) -0.05 5.5 -0.009 -27.4 0.12 5.4 0.022 -31.1

DFM-SV (1,1) 0.04 5.0 0.007 -20.0 0.11 5.8 0.019 -37.1
DFM-SV (4,2) 0.12 5.4 0.023 -21.7 0.06 5.4 0.011 -31.1

DFM-SV2 (1,1) 0.07 4.6 0.014 -18.2 0.06 5.5 0.010 -37.4
DFM-SV2 (4,2) 0.07 5.7 0.013 -32.3 0.00 5.2 0.000 -37.4

FAVAR-SV (1,1) 0.08 4.6 0.018 -18.3 0.06 5.5 0.011 -37.4
FAVAR-SV (4,2) 0.08 5.7 0.015 -32.3 0.02 5.2 0.005 -37.4

FAVAR-SV2 (1,1) 0.09 4.6 0.019 -18.3 0.06 5.5 0.011 -37.4
FAVAR-SV2 (4,2) 0.08 5.7 0.014 -32.3 0.03 5.2 0.005 -37.4

that the choice of the number of factors and lags in the factor models influences results
strongly in this case. Further, mean returns of the some model and strategy combinations,
such as FAVAR-SV and DFM-SV, are equal or higher than those of the S.M. strategy. In
summary, there exist clear differences in the results between the two strategies: in general,
more complex model structures such as DFM-SV and FAVAR-SV are good in combination
with the M.M. strategy while using more simple model structures in combination with
the R.M. strategy already leads to good results on mean returns. Apparently, using this
latter strategy implies a learning from past errors and compensates for the lack of model
complexity.

We next compare the volatility of realized returns in Table D.10. The differences between
realized return volatilities between model and strategy combinations are less pronounced
than the differences in mean realized returns. The obtained volatilities from each model
and strategy combination are also close to that of the S.M. strategy. An interesting point
is the comparison of model based and R.M. strategies. Given the same model class, M.M.
generally leads to a lower volatility compared to R.M., but this difference is sensitive to
the choice of the number of factors and lags in the factor models.

As additional indicators of risk, we report the Sharpe ratios and the largest loss from each
model and strategy in Table D.10. Sharpe ratios, defined as scaled means and volatility
estimates, are rather similar over different model structures and strategies, the conclusions
about the means listed above hold, for almost all models, also for the Sharpe ratios. Simple
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models and the complex DFM-SV2 and FAVAR-SV2 lead to large losses or do not improve
over the other models. Contrary to the positive results on the mean returns, it is of interest
to observe that a pure SV model has substantial risk of a loss for the M.M. strategy. For all
models, except SV, the largest loss is substantially lower for the M.M. strategy compared
to R.M.. A complex model like the FAVAR-SV combined with M.M. leads to a very
small extreme loss. Clearly, choice of momentum strategy matters substantially for risk of
returns.

Figure D.8: 99% realized return intervals for three selected model and strategy combinations.

(a) DFM (K = 1, L = 1) with M.M.

(b) DFM-SV (K = 3, L = 2) with R.M.

(c) DFM-SV (K = 4, L = 1) with M.M.

An important advantage of Bayesian inference is to provide complete distributions of the
realized returns from the specific model and investment strategy combinations. Figure D.8
presents the 99% intervals of the realized returns for three selected model and portfolio
strategies: DFM(1,1) with M.M., DFM-SV(4,1) with M.M. and DFM-SV(3,2) with R.M..
99% intervals of returns are relatively tight for all three model and strategy combinations.
In addition, even the worst-performing model and strategy combination, DFM(1,1) and
M.M., has very high returns in some periods. Similarly, the best-performing strategies,
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DFM-SV(3,2) with R.M. and DFM-SV(4,1) with M.M. lead to extreme losses in some
periods.11 Apparently the time-variation in the performances of each model and strategy
combination is important.

The realized return analysis of different model structures and investment strategies lead
to two general conclusions. First, results for return and risk are sensitive to model and
strategy choices, hence diversity of results should be taken into account. Second, several
return and risk features are important: Using M.M. in combination with very simple
models, like VAR-N and DFM-N that do not fit well, gives poor results. Complex models,
like DFM-SV2 and FAVAR-SV2 tend to overfit and do not improve results compared to
the models DFM-SV and FAVAR-SV. R.M. leads to reasonable returns for the simple
models such as VAR-N, SV and DFM-N. However, it also does not improve the results for
the complex DFM-SV2 and FAVAR-SV2 models compared to their simpler counterparts.
M.M. strategy gives reasonable risk results for almost all models. There exists a sensitivity
in the DFM class for the number of factors and lags. SV has poor risk. Using R.M. gives
poor risk results for all models except for SV. These conclusions lead naturally to our
main topic of exploring return and risk features by combining models and strategies and
exploring their behavior over time.

D.2 Return and risk features from combinations of model fore-
casts and investment strategies: additional results

This section presents additional results, particularly returns and risk from mixtures of
models combined with a mixture of two investment strategies (M.M., R.M.). Realized
returns and risk values of VAR-N, SV and DFM-N(4,2) combined with a mixture of M.M.
and R.M. strategies presented in the main text. Similarly, realized returns and risk values
of VAR-SV and DFM-SV(1-4, 1-2) models combined with two investment strategies (M.M.
R.M.) are presented in the main text of the paper. In Table D.11, we present the detailed
results for the third model and strategy combinations, namely FAVAR-SV models combined
with a mixture of M.M. and R.M. strategies. For the last combination, we also present the
mixture weights per number of factors in Figure D.9.

11These are general properties for all models we consider. We do not present all return intervals due to
space considerations.
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Table D.11: Returns and risk from a combination of a very flexible parametric model and two invest-
ment strategies. The top panel shows the returns and risk from the very flexible model
(FAVAR-SV(1-4, 1-2)) and a mixture of two investment strategies (M.M. R.M.). The
bottom panel reports these results for the mixture of two investment strategies combined
with each model separately. S.M. strategy has mean 0.09, volatility 5.7, Sharpe ratio
0.02 and largest loss -26.2. Bold values indicate an ‘equal or better’ value compared to
S.M.. 90% credible intervals are reported in parentheses.

Model Strategy Mean Vol. S.R. L.L.

Mixture of basic models and two strategies

FAVAR-SV(1-4, 1-2) M.M. & R.M. 0.18 4.5 0.039 -34.8
(0.14, 0.22) (4.5, 4.6) (0.031, 0.048) (-35.0, -34.6)

Mixture of strategies per model

FAVAR-SV(1, 1) M.M. & R.M. 0.11 4.5 0.024 -33.8
(0.02, 0.19) (4.4, 4.6) (0.004, 0.042) (-34.0, -33.1)

FAVAR-SV(1, 2) M.M. & R.M. 0.11 4.5 0.023 -34.2
(0.02, 0.19) (4.4, 4.6) (0.004, 0.042) (-34.4, -33.6)

FAVAR-SV(2, 1) M.M. & R.M. 0.14 5.1 0.027 -37.1
(0.05, 0.22) (5.0, 5.2) (0.010, 0.043) (-37.2, -36.9)

FAVAR-SV(2, 2) M.M. & R.M. 0.14 5.1 0.027 -37.1
(0.05, 0.22) (5.0, 5.2) (0.010, 0.044) (-37.2, -36.8)

FAVAR-SV(3, 1) M.M. & R.M. 0.15 4.7 0.033 -34.1
(0.07, 0.25) (4.5, 4.9) (0.014, 0.054) (-34.3, -34)

FAVAR-SV(3, 2) M.M. & R.M. 0.14 4.7 0.031 -34.4
(0.05, 0.25) (4.6, 4.9) (0.011, 0.052) (-34.5, -34.2)

FAVAR-SV(4, 1) M.M. & R.M. 0.11 5.1 0.022 -31.3
(0.02, 0.20) (5.0, 5.2) (0.004, 0.040) (-31.8, -31.1)

FAVAR-SV(4, 2) M.M. & R.M. 0.12 5.1 0.023 -31.5
(0.03, 0.21) (5.0, 5.2) (0.005, 0.040) (-32.4, -31.3)

Figure D.9: Weights (posterior mean) per combination 8 FAVAR-SV models and two strategies
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